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METHODS AND SYSTEMS FOR IMAGE
MATTING AND FOREGROUND
ESTIMATION BASED ON HIERARCHICAL
GRAPHS

FIELD OF THE DISCLOSURE

This disclosure is related to image matting in general and,
more particularly, image matting and foreground estimation
based on hierarchical graphs.

BACKGROUND

Image matting is a process of extracting foreground
objects from an image, along with a parameter called an
alpha matte. This process leads to useful applications, such
as image and video editing, image layer decomposition, and
scene analysis. In image matting, a pixel value Ii at a pixel
i may be modeled as a linear combination of a foreground
color value Fi and a background color value B,. That is,

I=aF+(1-a,)B, M

where «, represents the alpha matte value corresponding to
opacity of the foreground color.

Conventional image matting techniques can be generally
classified into two categories: supervised matting and unsu-
pervised matting. In supervised matting, a user’s guidance is
provided to label a few pixels to be either “foreground” or
“background.” Based on these labeled pixels, a supervised
matting method estimates the alpha matte values for remain-
ing unlabeled pixels. In contrast, unsupervised matting aims
to automatically estimate the alpha matte from the input
image without any user guidance.

Conventional image matting techniques have several
drawbacks. First, conventional unsupervised matting tech-
niques are computationally intensive. Although image pro-
cessing schemes have been proposed to reduce the required
computations, these existing schemes may result in
degraded image quality.

Second, results produced by conventional image matting
techniques may not always be consistent. Lack of global
information during the matting process makes it difficult to
produce consistent results in dealing with images with
cluttered scenes.

Third, conventional unsupervised matting techniques
focus on binary partitioning of image content. Since an
image may contain more than one foreground object, results
generated by these conventional unsupervised matting tech-
niques may not be very practical.

SUMMARY

In accordance with an embodiment, a method for image
matting based on a hierarchical graph model, comprises
receiving an input image including a plurality of image
elements; generating a plurality of matting cells based on the
input image, each cell including a group of image elements;
calculating affinity values for the plurality of matting cells
based on the input image; forming a graph based on the
plurality of matting cells and the affinity values, the graph
including a plurality of nodes representing the matting cells
and a plurality of edges associated with the affinity values of
the matting cells; and generating a plurality of matting
components for the input image based on the graph.

In accordance with another embodiment, a method for
image matting based on hierarchical graphs, comprises
receiving an input image including a plurality of image
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2

elements; forming a first graph based on the input image, the
first graph including a plurality of first nodes representing
the image elements and a plurality of first edges representing
affinity relationships among the image elements; forming a
second graph by grouping the image elements into a plu-
rality of cells, the second graph including a plurality of
second nodes representing the cells and a plurality of second
edges representing affinity relationships among the cells;
forming a third graph by decomposing the second graph into
a plurality of matting components, the third graph including
a plurality of third nodes representing the matting compo-
nents and a plurality of edges representing affinity relation-
ships among the matting components; and determining
probabilities of the matting components belonging to a
foreground region of the input image based on the third
graph.

In accordance with another embodiment, a non-transitory
computer-readable medium stores instructions, which, when
executed by a processor, cause the processor to perform a
method for image matting based on hierarchical graphs. The
method comprises receiving an input image including a
plurality of image elements; generating a plurality of mat-
ting cells based on the input image, each cell including a
group of image elements; calculating affinity values for the
plurality of matting cells based on the input image; forming
a graph based on the plurality of matting cells and the
affinity values, the graph including a plurality of nodes
representing the matting cells and a plurality of edges
representing affinity information of the matting cells; and
generating a plurality of matting components for the input
image based on the graph.

Additional features and advantages will be set forth in
part in the description which follows, and in part will be
obvious from the description, or may be learned by practice
of the disclosed embodiments. The features and advantages
will be realized and attained by means of the elements and
combinations particularly pointed out in the appended
claims.

It is to be understood that both the foregoing general
description and the following detailed description are exem-
plary and explanatory only and are not restrictive of the
invention, as claimed.

The accompanying drawings, which are incorporated in
and constitute a part of this specification, illustrate several
embodiments and together with the description, serve to
explain the principles of the disclosure.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A is a block diagram of an exemplary system for
image matting based on hierarchical graphs, according to an
embodiment;

FIG. 1B is a schematic diagram of a computer system for
implementing the system of FIG. 1A, according to an
embodiment;

FIG. 2 illustrates an exemplary contraction process based
on a pixel-level graph, according to an embodiment;

FIG. 3 illustrates results of the contraction process when
applied to an exemplary input image, according to an
embodiment;

FIG. 4 illustrates a pixel-to-cell mapping process based on
a feature space, according to an embodiment;

FIGS. 5(a)-5(d) illustrate exemplary embodiments of
fixed-resolution schemes and a multi-resolution scheme for
cell-level graph modeling;

FIG. 6 illustrates cell-level processing based on multi-
resolution image patches, according to an embodiment;
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FIG. 7 illustrates a cell-to-component mapping, according
to an embodiment;

FIG. 8 illustrates exemplary embodiments of an input
image, a matting segment, and a matting component;

FIG. 9 illustrates an exemplary embodiment of a compo-
nent-level graph;

FIG. 10 illustrates a component-to-layer mapping,
according to an embodiment;

FIG. 11A illustrates matting results based on a direct
mapping from cells to layers, according to an embodiment;

FIG. 11B illustrates matting results based on a multi-
resolution mapping from cells to components and then to
layers, according to an embodiment;

FIG. 12 illustrates exemplary embodiments of matting
layers and a possibility map for a foreground region of an
input image;

FIG. 13 illustrates a process for image matting and
foreground estimation based on hierarchical graphs, accord-
ing to an embodiment; and

FIG. 14 illustrates a process for image matting and
foreground estimation based on hierarchical graphs, accord-
ing to another embodiment.

DESCRIPTION OF THE EMBODIMENTS

Reference will now be made in detail to the exemplary
embodiments of the disclosure, examples of which are
illustrated in the accompanying drawings. Wherever pos-
sible, the same reference numbers will be used throughout
the drawings to refer to the same or like parts.

According to some embodiments of the disclosure, a
hierarchical framework is disclosed to perform image mat-
ting, including supervised and unsupervised matting. Based
on a bottom-up mechanism, the hierarchical framework
gradually condenses image data from pixels to cells, from
cells to components, and finally from components to matting
layers. More specifically, at a first level (i.e., the pixel level)
of the hierarchical framework, image pixels are first con-
densed to cells through a pixel-to-cell mapping. This map-
ping is based on an assumption that neighboring data in a
feature space tend to share similar matting values. This
condensation process can greatly reduce required computa-
tions for spectral analysis without generating noticeable
quality degradation.

At a second level (i.e., the cell level), the cell-based
structure provides learning of multi-scale affinity based on a
cell-level graph. The multi-scale affinity learning may effec-
tively improve the performance of spectral analysis when
dealing with images of cluttered scenes. From the cell-level
graph, matting components are automatically extracted by
solving a graph partitioning problem.

At a third level (i.e., the component level), a component-
level graph is generated for the estimation of multiple
matting layers. According to a further embodiment, a fore-
ground probability distribution model is applied to stochas-
tically generate a list of possible foreground mattes and
estimate the foreground possibility for the matting layers.

FIG. 1A depicts a system 100 for image matting based on
hierarchical graphs, according to an embodiment of the
disclosure. System 100 includes a pixel processing module
102, a cell processing module 104, a component processing
module 106, a layer processing module 108, and a fore-
ground estimation module 110. Modules 102-110 may be
arranged in series so that pixel processing module 102
receives input data 112 and foreground estimation module
110 produces output data 114. Cell processing module 104,
component processing module 106, and layer processing
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4

module 108 carry out intermediate processing steps accord-
ing to the order shown in FIG. 1A. One or more of modules
102-110 may be omitted from system 100. For example,
layer processing module 108 may be omitted, so that fore-
ground estimation module 110 generates output data based
on data provided by component processing module 106.

In one embodiment, modules 102-110 shown in FIG. 1A
may be implemented by a computer system 120 shown in
FIG. 1B including a processor 122 and a non-transitory
computer-readable medium 124. Processor 122 can be a
central processing unit (CPU), such as an INTEL processor,
an AMD processor, or other processor known in the art.
Computer-readable medium 124 can include a hard drive, a
flash drive, a CD, a DVD, a RAM, a ROM, or the like, which
is configured to store instructions and data relevant to the
image matting technique disclosed herein. The instructions
can be written in C, C++, BASIC, FORTRAN, JAVA, or
other programming languages known in the art. Processor
122 receives the instructions and data from computer-read-
able medium 124 and carries out the functions of modules
102-110 as described here.

In another embodiment, modules 102-110 may be imple-
mented on a programmable integrated circuit, such as a
programmable logic array, a field-programmable gate array,
an application-specific integrated circuit, and the like.

System 100 may further include user input/output (1/O)
devices 126 and 128, such as a display device 128, a
keyboard 126, a mouse, a touchpad, a touch screen, and the
like. For example, system 100 receives user input through
keyboard 126 and applies the image matting techniques to
the input data according to the user input. System 100 then
presents the output data to a user through display device 128.

Input data 112 may include image data or video data
provided by a user or an external system or received from a
storage medium such as a hard drive, a flash drive, a CD, a
DVD, a RAM, a ROM, etc. Input data 112 may represent
images or video frames of any natural scenes captured by an
imaging system, such as a camera or a camcorder. Input data
112 may also represent images or video frames of synthetic
or artificial scenes that are generated by a computer. The
scenes represented by input data 112 include one or more
foreground objects that are relatively close to the imaging
system that captures the images or video frames. The scenes
also include one or more background objects that are rela-
tively further away from the imaging system that captures
the images or video frames.

The images or video frames in input data 112 may be
represented by image elements, such as pixels, arranged in
one or more regular arrays including rows and columns.
Each image element includes one or more values defined
according to a color space, such as the RGB color space, the
CMYK color space, or other color spaces known in the art.
In one embodiment, each image element is associated with
either one of the foreground objects or one of the back-
ground objects, such that the image element represents part
of the foreground object or the background object. In
another embodiment, each image element may be associated
with a combination of one of the foreground objects and one
of'the background objects, such that the image elements falls
on an image boundary between the foreground objects and
the background objects.

Output data 114 may identify the image elements in the
input data that are associated with the foreground objects
and/or the background objects. In one embodiment, output
data 114 includes a mask having a plurality of elements.
Each element of the mask is associated with an image
element of input data 112 and includes a value, such as an
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alpha matte value, which correspond to the opacity of one of
foreground objects. For example, an element of the mask
having a value of zero may identify a completely transparent
foreground object or lack of foreground objects, such that
the associated image element is associated with a back-
ground object. An element of the mask having a value of one
may correspond to a completely opaque foreground object,
such that the associated image element is associated with the
foreground object. An element of the mask having a frac-
tional value may correspond to a combination of a fore-
ground object and a background object. This occurs when
the foreground object is partially transparent or the image
element falls on the image boundary between the foreground
object and the background object. The fractional value
represents a contribution by the foreground object to the
associated image element.

According to the embodiments of this disclosure, system
100 applies image matting process to input data 112 based
on a hierarchical graph model. The hierarchical graph model
includes a plurality of levels, such as the pixel level, the cell
level, and the component level. Accordingly, the disclosed
process includes a plurality of stages executed by respective
modules 102-110. These stages include, for example, a
pixel-level processing stage, a cell-level processing stage,
and a component-level processing stage. Data produced by
component processing module 106 may be further processed
by layer processing module 108 and foreground estimation
module 110 to generate output data 114. As the process
proceeds through the stages, the number of elements in the
processed data is gradually reduced, thereby providing an
efficient and accurate estimate of the foregrounds and the
alpha mattes of input data 112. Details of modules 102-110
are further described hereinafter with reference to FIGS.
2-10.

Contraction Process

According to an embodiment, the pixel-level processing
stage forms the first stage of the image matting process
based on the hierarchical graph model. The pixel-level
processing stage is carried out by pixel-processing module
102. Module 102 is configured to condense image eclements,
such as pixels, in input data 112 into compact cells in order
to reduce the required computations in subsequent stages.
The term “condense” as used herein refers to a process of
spatially gathering similar image pixels together.

To condense pixels, module 102 applies a local contrac-
tion process based on a minimization of a graph-based
energy function. Details of the local contraction process are
explained as follows.

In the local contraction process, input data 112, such as an
input image, is first represented as a graph, where vertices of
the graph represent the pixel-wise intensity data and each
edge between a pair of vertices represents an affinity
between the corresponding pixel pair. Here, the affinity
value A _(i,j) between two pixels i and j is defined as:

@

Y R e

In equation (2) above, I, and [ represent color values of an
input image I at pixels i and j, p, represents a 3x1 mean color
vector in a window o, of pixels, X represents a 3x3
covariance matrix, lw,| represents the number of pixels in
the local window ,,, U represents a 3x3 identity matrix, and
€ represents a regularization term to avoid over-fitting in
smooth regions. For example, in a smooth region, entries in
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2, have relatively small values so that a small deviation
caused by noise may induce a large variation of the affinity
value. By properly adding a small value of €, fluctuations of
the affinity value in smooth regions can be effectively
suppressed. According to equation (2), if two pixels have
similar color appearance, the affinity value between them is
relatively large. The local window o, is used to scan through
the whole image to produce several affinity values for every
edge in the input image. By averaging these affinity values
for each edge, a pixel-level graph model is generated.

According to an embodiment, an x-y coordinate system is
defined for the input image I, wherein the x-axis is along a
first dimension of the pixel array and the y-axis is along a
second dimension of the pixel array. The x-coordinate and
the y-coordinate of each image pixel are normalized to the
range of [0, 1]. In addition, it is assumed that (x, y) represent
the normalized coordinates, that is, the original spatial
coordinates of the i” pixel in the input image, and (%, §)
represent the contracted coordinates, that is, the spatial
coordinates of the i” pixel after the local contraction pro-
cess. Moreover, the following vectors are defined based on
the pixel coordinates:

xN]T, =Dy - .- .VN]T, =[x

sand =7 % .. Iwl%

X=X X . . .

T F]

where N represents the total number of pixels in the input

image. Accordingly, the local contraction process may be

represented as derivations of optimal vectors, X and §, which
minimize the following energy functions E,(X) and E,():

3
E®= > Aglh, piE -5 +1 Z(xk -0
wg ijewg
and
&)
Ey(3) = Z Z Agli, P; = 3,7 +4 Z(yk vl
wg i jetg

In each of functions (3) and (4), the first term on the right
hand side corresponds to the pair-wise cohesion forces that
tend to pull pixels spatially closer, while the second term on
the right hand side corresponds to the deviation cost that
seeks to preserve the original image structure. Parameters A,
and A, are used to control the strength of contraction.

In order to find the optimal vectors X and ¥, equations (3)
and (4) are rewritten as:

E (®)=28TLx+, (F-x) 1 (F-x), (3)

and

E (2 Lt (5-3) (-p). Q)
Here, L denotes the graph Laplacian matrix, whose off-
diagonal entries are defined as L(1 J) -2, i J)EwA (i,)),
diagonal entries are defined as L(i,i)=X %, |, Dew; A, (1,]) and
T represents the transpose operator. By dlﬁ"erentlatlng equa-
tions (5) and (6) with respect to X and ¥ respectively, the
following linear system is produced:

QL+NDE=hx, @)

and

QRLAMDI=hy. (®)
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The optimal solutions are then solved based on the above
linear system of equations (7) and (8).

FIG. 2 illustrates an exemplary local contraction process,
according to an embodiment. In FIG. 2, the input image in
input data 112 is represented by an initial graph 202, in
which each vertex 206 represents an image pixel with its
color value, and each edge 208 represents an affinity rela-
tionship between a pair of adjacent pixels. Application of the
contraction process to initial graph 202 results in contracted
graph 204, in which pixels with relatively high affinity
values are contracted towards each other.

FIG. 3 shows an exemplary input image 302 and a
contracted image 304 after the local contraction process. It
can be seen that pixels with similar appearance converge
toward each other after the contraction process, while pixels
with dissimilar appearance tend to move apart from each
other.

After the contraction process, the contracted image pixels
are merged or condensed into multiple cells. Here, a five-
dimensional feature space W is defined, based on the con-
tracted spatial coordinates (X, ¥) and the RGB color values
(1%, 1%, I%). FIG. 4 shows an exemplary embodiment 402 of
the five-dimensional feature space W. For ease of illustra-
tion, the color coordinates are combined in feature space 402
to show a three-dimensional representation thereof. A fea-
ture vector is defined for each contracted image pixel of
contracted image 304 of input image 302 (FIG. 3) in feature
space 402. In feature space 402, spatially neighboring pixels
with different colors are pulled away from each other and are
less likely to get blended together.

According to an embodiment, the merging or condensa-
tion of image pixels into cells is represented as a pixel-to-
cell mapping process. A pixel 1 with contracted coordinates
(%, §) and RGB values (1%, I°, I%) is mapped to a cell with
an index ([%,xb.], [¥,xb.], [IXxb_], [1,°xb_], [IPxb_]). Here,
the symbol “[ ]” represents a rounding operation, b, repre-
sents a number of spatial sampling bins, and b, represents a
number of color sampling bins.

The pixel-to-cell mapping of the whole contracted image
is recorded in an NxP binary matrix M, where N and P
denote the total number of image pixels and cells, respec-
tively. Here, if the i pixel is mapped to the j* cell, then
M(i,j)=1, and M(1, k)=0 for all k=j.

In one embodiment, parameters b, and b, are set to 15 so
that the number of cells P is about 10,000 to 20,000. In other
embodiments, parameters b, and b, may be set to any values
between 10 and 20. In still other embodiments, parameters
b, and b_ may be set to any other values as appropriate.
Multi-Scale Affinity and Cell-Level Graph

After the image pixels are merged into cells by pixel
processing module 102, the cells are output to cell process-
ing module 104, which determines a cell affinity value
between each pair of cells in order to construct a cell-level
graph model. In an embodiment, cell processing module 104
applies a multi-scale or multi-resolution approach to deter-
mine the affinity information from an image pyramid. The
multi-scale cell-level graph model is further described
below.

FIGS. 5(a)-5(d) illustrate exemplary embodiments of
fixed-resolution scheme and multi-resolution scheme celled-
level graph modeling. The schemes enable determining the
affinity value between cells at different spatial ranges. The
left image of FIG. 5(a) shows an image of an artificial scene
that contains a circular object 502 with a square hole, and a
small triangular object 504. The middle and right images of
FIG. 5(a) illustrate the corresponding feature distributions at
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the pixel level and the cell level, respectively. Here, circles
represent individual pixels, and cubes represent individual
cells.

FIGS. 5(b) and 5(c) illustrate different embodiments that
use different local windows each including 3x3 sampling
pixels to explore the affinity information around an image
pixel. Here, each “@” symbol represents a sampling pixel.
The local window in the left image of FIG. 5(b) covers a
relatively small spatial region including only immediately
adjacent pixels, while the local window in the left image of
FIG. 5(c) covers a relatively large spatial region including
more distant pixels.

Based on Equation (2), the affinity value for each pair of
the nine sampling pixels is determined. The middle image of
FIG. 5(b) shows the corresponding coverage of pixel pairs
in the feature space. In this case, only the affinity values of
adjacent sampling pixels are determined. A far-range affin-
ity, such as the affinity between the pixels within the hole
and the pixels outside circular object 502, is not calculated.
In contrast, in the embodiment of FIG. 2(c), the affinity
among distant sampling pixels is calculated, while some
details may be lost, such as the relationship between trian-
gular object 504 and circular object 502.

The right images of FIGS. 5(6) and 5(c) show the affinity
among the cells after the image pixels are merged. Similarly,
the small-scale sampling window provides a near-range
affinity among the cells, while the large-scale sampling
window provides the far-range affinity among the cells.

To explore the affinity for both near and far ranges, the
embodiment of FIG. 5(d) uses the multi-scale approach,
where both a small-scale window and a large-scale window
are used to sample the input image. It can be seen from the
right image of FIG. 5(d), both the near-range and far-range
affinity information among cells is determined based on the
multi-scale sampling scheme. In addition, at the cell level, a
lot of redundant affinity computations can be saved as
compared to the pixel-level affinity estimation.

According to a further embodiment, the multi-scale affin-
ity estimation is implemented by computing affinity over a
set of multi-resolution image patches. FIG. 6 illustrates
cell-level processing based on multi-resolution image
patches, according to an embodiment. For example, multi-
resolution image patches 602 are sampled from a Gaussian
image pyramid 604. Here, image pyramid 604 may be
generated by module 104 from input image 302 by recur-
sively performing a down-sampling process with a sampling
rate d, along both x and y-axes. Resulting image pyramid
604 includes a coarsest image 604 A, one or more interme-
diate-resolution images 604B, and a finest image 604C,
which is input image 302. From each of the images 604 A-
604C in image pyramid 604, a sliding window is used to
extract image patches.

For the image patches, such as image patches 602, module
104 applies a local affinity learning process to estimate the
affinity values among cells. At the coarsest level (i.e., image
604 A), the estimation of the affinity information is similar to
the far-range case illustrated in FIG. 5(c¢), in which some
details of the affinity information may be missing. However,
as module 104 gradually scans the images from the low
resolution images to high resolution images, more and more
details of affinity information are obtained. In general, most
affinity information can be extracted from the low-resolution
images, while only a small percentage of detailed affinity
information is extracted from the high-resolution images.
Hence, in one embodiment, the image patches from the
lowest-resolution image (i.e., the coarsest image 604A) are
completely scanned by sliding windows, while only a subset
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of the image patches from the higher-resolution images (i.e.,
images 604B and 604C) are scanned, to determine the
cell-level affinity information.

For the sampling of image patches in the higher-resolu-
tion images (i.e., images 604B and 604C), module 104 may
adopt a residual-based scheme to compensate for the miss-
ing details caused by the down-sampling process. More
particularly, module 104 maps individual low-resolution
pixels and high-resolution pixels into grid cells to form two
sets of cells. The difference between these two sets of cells
indicates the missing information after the down sampling
process. Based on residual cells, module 104 identifies the
corresponding pixels and places sampling patches around
these pixels. More particular, for the pixels which are
mapped into the residual cells, a set of rxr windows centered
at each of the pixels are placed on the high-resolution images
to obtain high-resolution sampling patches. In addition, a set
of sliding windows are placed on the low-resolution image
to obtain low-resolution sampling patches. Cell-level affinity
information is then computed from the sampling patches.

Based on the cell-level affinity information, module 104
generates a cell-level graph 606 as shown in FIG. 6. To
construct cell-level graph 606, it is assumed that Q repre-
sents the set of cells in the cell-level graph, which contains
P cells in total. The alpha matte values of these P cells are
represented by a Px1 vector o= [(xl, O, - - -, Ap]T, where o,
denotes the alpha value of the k% cell.

In addition, it is assumed that the alpha matte values of the
pixels within a local image patch may be expressed as an
affine transformation of the corresponding image features
inside the image patch. The coefficients of the affine trans-
formation are assumed to be constant for one image patch,
but may be different across different patches. Since in the
pixel-to-cell mapping, pixels mapped to the same cell typi-
cally share similar color appearance and spatial location, so
that these pixels share similar alpha matte values. Hence,
within a local image patch, it is assumed that the alpha matte
values of the referred cells are expressed as an affine
transformation of the corresponding image features. For an
image patch w, of size rxr in the input image and centered
at a pixel q, module 104 inspects the image pixels of the
patch to determine the set of mapped cells €, which is a
subset of Q. Here, Nq represents the number of cells in Q_.
Since some pixels in the patch o, may be mapped to the
same cell, N has a value between l and r*. For a cell i in Q,,
o~k ¢f, b " represents its color feature, which is com-
puted by, for example, averaging the RGB color values of all
the related pixels of that cell. Within the local image patch,
the alpha value of the cell i is estimated by an affine
transformation of the feature vector ¢,. That is, the alpha
value of the cell i is calculated by:

=g 1][5],
0

where 3=[B,, B, B,17 and B, is a scalar. Since it is assumed
that the affine transformation coefficients {f, B} are locally
constant, module 104 may further determine an affine model
for the alpha matte values of all the cells in . Here, for the
k” cellin Q > T represents the corresponding index of this
cell in Q. Accordingly, an N _x1 vector

)

Qg =¥ g, g,
q = L

10

15

20

25

30

35

40

45

50

55

60

65

10

represents the vector of alpha matte values of the N, cells in
Q,and @, [(|)1 - q)NqT] represents a matrix stacked by
&~0,” l] Based on the above notations, the alpha matte
prediction for all the cells within image patch w, can be
expressed as:

B
% :q}q[ﬁ'o }

Equation (10) relates the alpha matte values of all the cells
in Q, with the corresponding image features. If it is assumed
that both o, and @ _, are given, then the optimal § and f3, can
be derived by minimizing the following quadratic cost
function E(B, By):

10

2 (1D
+csff B

E(B, Po) =||q —Qq[ﬁﬁ,;

where ¢, is a parameter for regularization. For the cost
function E(f, B,) in (11), the optimal solutions of §§ and {3,
are given by:

[ B
Po
In equation (12),
I 0
Pe= [ 0 0]

is a 4x4 matrix, in which I; is a 3x3 identity matrix. By
substituting equation (12) into equation (10), a local con-
straint over o, can be formulated as

. (12)
} = (@, + cDyp) 'Ol e

o, Wq a,, (13)

where Wq:CI)q(CI)qTCquBDB)"lCDqT. In equation (13), W, is
an N, xN, transformation matrix. In equation (13), each
entry of o, on the left side is expressed as a linear combi-
nation of the entries of c., on the right side. This means that,
the alpha matte value of each cell in €, may be expressed
as a linear combination of the alpha values of the cells in €2,,.
This local constraint over o, is further formulated as a
squared error cost function J, with respect to a:

Jq(wq) = ”wq - Wquqllz (14

=l U, - W, - W) ey,

T
=g Lgeg.

In equation (14), 1, is the N_xN,, identity matrix. The
local Laplacian matrix for the cells in €2, is an N, xN_, matrix
defined as:

Lq:(lq_ Wq)(lq_ Wq)T' s

It is assumed that a graph T, is defined, in which the
vertices represent the cells in £, and the edge between a pair
of vertices represents the affinity relationship between the
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corresponding cell pair. For ', its corresponding graph
Laplacian matrix is defined as:

L,=DjA, (16)
where D, is the degree matrix and A, is the affinity matrix.
The entry A (i,j) represents the affinity value between the
cells i and j, while the degree matrix D,, is a diagonal matrix
with its diagonal terms being defined as:

Ng (17
Dylis )= ) Aqli, ).

J=1

According to an embodiment, the affinity matrix for the
cell-level graph is not explicitly defined. Instead, the affinity
information is derived based on the local learning scheme
expressed in equation (14). Furthermore, the cost function J,,
in equation (14) can also be interpreted as

Jolag) =l La, (18)

Ng Ng
1 PR 2
=D D 54l Dlles —alP.
=1 j=1
where ¢, and ¢, represent the i and j* elements of the vector
o, respectivelly.

After determining the local Laplacian matrix based on the
cost function J, defined in equation (14) within a single
image patch w_, module 104 further determines a global cost
function by integrating the local cost functions over a whole
patch set S, ;. Here, the cost function J, in equation (14)
may be rewritten as

J(@)=a’L’ . (19)

In equation (19), a=[a,, 0, . . . , ap]%, and L', denotes a
PxP local Laplacian matrix, whose entries for the pairs of
cells in Q, are equal to the corresponding ones in L, while
the remaining entries are set to zero. Based on equation (19),
a global cost function J is defined as a weighted sum of J (o)
based on a weighting function w(l ). That is:

20
J(@) = Z wil)e! Lya). e

qen

The weighting function w(l,) in equation (20) reflects the
importance of each patch according to the corresponding
image level in the pyramid. Here, 1, denotes the level index.
In image pyramid 604, the number of pixels in the jth level
is (d,2Y~* times smaller than that of the original image after
being scaled down (j-1) times in both x and y directions
with the down-sampling rate d.. By assuming that each pixel
in the jth-level image is (d,>Y~"' times more important than
that of the original image pixel, the weighting function w(l,)
is defined as

w(ly=(d 2y eay)

Moreover, equation (20) may be rewritten in a more
compact form as:

J(@) =o' La, 22)

where

L= Z wilp)L,. 23)
geQ)
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L in equation (22) is called the cell-level matting Lapla-
cian (CML) matrix for the cell-level graph. Since the CML
generated according to equation (23) is an unnormalized
Laplacian matrix, it is normalized before spectral clustering
in order to avoid unbalanced clustering. In one embodiment,
module 104 may apply a symmetric normalization to the
CML, which modifies the affinity value between each pair of
cells based on a degree matrix of the cells. The normalized
CML L is defined to be:

I=D'2LD "2, (24

In equation (24), the diagonal matrix D represents the PxP
degree matrix of the CML.
Component-Level Graph

FIG. 7 illustrates a cell-to-component mapping, according
to an embodiment. After module 104 obtains cell-level
graph 606 as shown in FIG. 6, cell-level graph 606 is output
to module 106, which decomposes it into a set of matting
components 702, as shown in FIG. 7, and forms a compo-
nent-level graph for the estimation of foreground mattes.
During the construction of the component-level graph, some
prior information about the foreground model may be
included.

To decompose cell-level graph 606 into matting compo-
nents 702 as shown in FIG. 7, module 106 performs spectral
clustering to generate hard-decision matting segments and
then applies an optimization process to transform or refine
the hard-decision matting segments into soft-decision mat-
ting components. FIG. 8 illustrates exemplary embodiments
of'an input image 802, a matting segment 804, and a matting
component 806 generated by module 106.

For the spectral clustering, module 106 transforms the
cell-level data to a higher-dimensional space, in which the
cell-level data points with high affinity tend to share similar
coordinates, and then performs clustering in the higher-
dimensional space. More particularly, module 106 first gen-
erates a PxS matrix E based on S normalized eigenvectors,
e, ..., ¢e° corresponding to the S smallest eigenvalues of
the PxP cell-level Laplacian matrix T discussed above. In
the matrix E, the i” row vector represents the coordinates of
the i cell in Q in a space spanned by the S eigenvectors. By
performing k-means clustering over the row vectors of E,
module 106 clusters the P cells into K different clusters. The
K clusters of cells are treated as the initial matting segments,
such as matting segment 804 shown in FIG. 8. In one
embodiment, module 106 uses K binary vectors c* of size
Px1 to represent the hard-decision clustering result, where
1=k=<K. If the k? cluster contains the i” cell of Q, module
106 sets the i” element of ¢* to 1; otherwise, the i element
of ¢* is set to 0.

To transform the hard-decision matting segments into
soft-decision matting components, such as matting compo-
nent 806 shown in FIG. 8, module 106 applies a global
optimization process based on the cost function in equation
(22). Here, module 106 organizes each matting component
as an assembly of cells and represents the alpha matte
information of a component k in terms of a Px1 alpha matte
of=[ak, ok, . .., 0517 The i” element of o indicates a
soft membership that the i cell belongs to the k” compo-
nent. Based on the assumption that the soft-decision matting
components do not deviate too much from the hard-decision
matting segments, the alpha matte vector a* corresponding
to the k™ matting component is obtained by minimizing the
following equation:

H~M LM+ (o= (=), 2%
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where A is a constant to control the trade-off between the
matting [aplacian cost and the deviation from the matting
segments. Based on equation (25), module 106 determines
the optimal o by solving the following sparse system of
linear equations:

(L+nT)aF =), (26)

where [ denotes the PxP identity matrix. It can be seen from
FIG. 8 that more detailed matting values are obtained in
matting component 806 than in initial matting segment 804.
After the matting components are determined, module
106 generates a component-level graph. Module 106 gen-
erates the component-level graph by condensing the cell-
level graph or according to a divergence-based process. In
one embodiment, module 106 generates the component-
level graph by further condensing the cell-level matting
Laplacian matrix T into a component-level matting Lapla-
cian L, ... Here, it is assumed that T=[a!, . . ., o]
represents a PxK matrix formed by the alpha matte vectors
of the K matting components, which is used to calculate the
component-level matting Laplacian L, ; as follows:
Leondensea=T"LT. @n

condense

Since the cell-level matting Laplacian T is constructed
based on the multi-resolution local affinity learning process
described above, the lack of knowledge between spatially
isolated components may become a barrier to handle more
complicated scenes. To better model the spatial relationship
between distant components, module 106 can use a diver-
gence-based graph, according to another embodiment. Mod-
ule 106 constructs the divergence-based graph by explicitly
estimating the affinity value between every component pair,
as described hereinafter.

For each pairing of components, module 106 measures
the Kullback-Leibler (KL) divergence between the color
distributions of the two components. For the matting com-
ponent k, module 106 uses a Zx1 vector h*=[h %, ..., h,]*
to represent its color distribution, where Z is the number of
color bins. Here, h/* represents the probability value in the i”*
bin. Module 106 then group cells with similar color values
into a color bin. For the i color bin of the k” matting
component, module 106 uses p, to represent the set of cells
belonging to this bin. Accordingly, h* is determined as

7

follows:
1 (28)
k
H = 55 D, N
Jep;
where
»
k
NE =3 akN;
=

is the normalization term. In equation (28), N, is the number
of pixels in cell j, and (xjk is the alpha value of the cell j for
the k” matting component. Based on the above definitions,
the KL divergence between the two matting components m
and n is defined as:

@29
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where D, is a diagonal degree matrix and defined as:

Dia(pllg) = 3 p(i)log(%).

For any pair of components, a high divergence value
corresponds to a low affinity value. Hence, module 106 uses
a sigmoid function o(x)=1/(1+exp(-x)) to define an affinity
Ay, (m,n) between components m and n as:

A (m,1)=0(V g~V (11, 1) (30)

In equation (30), Vg, represents the mean of the KL
divergence values over all component pairs. After having
obtained the KxK divergence-based affinity matrix A.;, the
diagonal degree matrix Dy, is computed as:

K (3B
Dialiy = Axalis ).

J=1

Finally, the divergence-based Laplacian matrix L, is
calculated as:

Lxz=Dyg—Ag. (32)

Module 106 then combines the divergence-based Lapla-
cian L., with the condensed matting LaplacianL__, ., ... t©
calculate the component-level graph Laplacian L

comp*

L omp™L condenseathxilxr (33)

In equation (33), Ag; is a parameter to balance the
contribution between L__ ..., and L. Module 106 cal-
culates A.; based on the ratio between the sum of the
condensed matting affinity degrees and the sum of the KL
affinity degrees as follows:

(B4

K K
A = E Leoionae 1 | Y L.
i=1

i=1

FIG. 9 illustrates an exemplary component-level graph 902
generated by module 106 based on matting components 702
of FIG. 7.

Component-to-Layer Mapping

According to an embodiment, after module 106 calculates
the component-level matting Laplacian L, as discussed
above, layer processing module 108 receives the data and
applies a component-to-layer mapping procedure based on
component-level spectral clustering. FIG. 10 illustrates an
exemplary embodiment of the component-to-layer mapping
procedure, in which matting components shown in FIG. 7
are mapped to a plurality of layers 1002 based on component
level graph 902.

Similar to the cell-to-component mapping described
above, the component-to layer mapping may also be per-
formed based on spectral clustering. Here, module 108
generates a component-level matrix E_,, , based on normal-
ized eigenvectors, ecompl, e ecompK of the KxK compo-
nent-level Laplacian matrix L_,,,,. By performing k-means
clustering over the row vectors of E_,,,, module 108
clusters the K matting components into Q clusters, where Q
is an integer ranging from 2 to K and may be determined
according to user input. Module 108 then uses a plurality of
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Kx1 binary vectors d?, where 1=q=Q, to represent the
clustering result. If the q” cluster contains the i’ matting
component, module 108 sets the i element of d7 to I;
otherwise, the i” element of d7 is set to 0. Based on d?,
module 108 represents the alpha matte information of the q”
matting layer using a Px1 vector a,,,,.,?, which is defined as:

A=l .. . (35)

By using the cell-to-component mapping and the compo-
nent-to-layer mapping, system 100 performs spectral clus-
tering twice on the image data, instead of directly clustering
cells into matting layers. In particular, system 100 first
clusters cells into components and then clusters components
into layers. Based on the cell-level graph, such as graph 606
shown in FIG. 6, system 100 computes the affinity values of
the graph vertices locally based on the multi-resolution local
affinity learning scheme, to explore the affinity information
in short ranges. On the other hand, based on the component-
level graph, such as graph 902 of FIG. 9, system 100
calculates the affinity value between each pair of compo-
nents and generates a fully connected graph including both
near-range and far-range affinity information. Based on this
fully connected graph, system 100 explores the affinity
information on a more global scale as compared to the
cell-level analysis alone. FIG. 11A illustrates matting results
based on a direct mapping from cells to layers, according to
an embodiment. In FIG. 11A, the cells are directly clustered
into two, three, four, and five layers. As a comparison, FIG.
11B illustrates matting results based on a multi-resolution
mapping from cells to components and then to layers,
according to an embodiment. In FIG. 11B, the two-stage
clustering is applied to the cells by first decomposing the
cells into components and then clustering the components
into layers. By decomposing an image into a larger number
of components first, followed by the component-to-layer
mapping, system 100 obtains much more reasonable results.

According to another embodiment, system 100 applies a
cell-to-pixel mapping to convert the cell-level information
o* back to the pixel domain. For any pixel i, if j denotes the
corresponding cell, then pu(j) denotes the set of cells within
a neighborhood of j. The pixel-level data 0™ of the pixel
i is interpolated by using the cell-level data values 0,°°” of
the cells in p(j) based on the following formula:

orel = Z o pais (36)
kepi)

where
-1
o s - Al s - Al
Pri = exp| — o exp| — o E
kep(j)

In equation (37), p,, is a conditional probability and f;
denotes the image feature of the pixel i in the five-dimen-
sional feature space W defined by the deformed spatial
coordinates (%, ¥)) and the RGB color values (1%, 1°, 1%), as
described above. On the other hand, f, denotes the average
of the feature vectors related to the cell k. The conditional
probability in equation (37) models how likely the pixel i
belongs to the cell k, based on the distance between f; and f,.
in the feature space. For example, a shorter distance indi-
cates a higher probability.

Foreground Estimation

After module 108 generates the matting layers, module

110 receives the matting layers and applies a probabilistic

@D

30

45

50

65

16

estimation process to the matting layers to estimate fore-
ground information. Here, module 110 processes each mat-
ting layer in terms of associated matting components and
applies a probabilistic scheme to estimate, for each matting
component, the probability of being a portion of the fore-
ground objects.

More particularly, module 110 generates a probability
distribution model p(b)=p(b1, . . ., by), where b, €{0,1} for
1=k=K. For the matting component k, module 110 sets b,=1
when this component is identified as a foreground compo-
nent; otherwise, b,=0. Based on the above definitions, each
vector b represents a foreground matte hypothesis and
corresponds to an assembly of matting components. Once
module 110 derives the probability distribution model p(b)
for all possible b’s, module 110 selects a subset of b’s that
is more likely to represent a foreground matte.

According to one embodiment, the distribution model
p(b) is based on a consistency assumption that a pair of
components with relatively high affinity tends to share the
same foreground index. Thus, these two components tend to
be either both foreground or both background. Using input
image 302 in FIG. 3 as an example, it is assumed that the two
flowers on the front are divided into two matting compo-
nents. Once one of them is classified as a foreground
component, while the other has a relatively high probability
to also be a foreground component.

Based on this consistency assumption, module 110 evalu-
ates a given vector b based on the component-level Lapla-
cian matrix L, to determine a measure of “inconsistency”

comp

defined as follows:

b (38)

d/b(b):bTmep .

Based on the definition in equation (38), a vector b with
a low value of inconsistency d,(b) indicates that the corre-
sponding assembly of matting components has a high prob-
ability to be a part of the foreground matte. However, this
does not imply that a proper foreground vector can thus be
found simply based on this measure alone. One example is
that a b vector whose entries are all ones (or all zeros)
corresponds to zero inconsistency, may not be desired result.

According to another embodiment, in order to avoid the
above problem, module 110 further applies a balancing
weight based on the assumption that a ratio between the
foreground area and the background area should not be
overly unbalanced. A balancing weight 1(b) is defined as:

11 39
o) =g+ 5
where
K
No =) N,
k=1
and

K
Na= Y N (1-b0)
k=1

denote the sum of matting values in the foreground area and
the background area, respectively. The term N* is defined
above in equation (28). Under an unbalanced circumstance,
one of N and Nz is relatively small and thus the weight n(b)
becomes relatively large. By including this balancing weight
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n(b) into the inconsistency measure, module 110 calculates
the inconsistency d(b) as follows:

dpBINGYO L pomph)-

With this weighted inconsistency measure, the probability
distribution model is defined as

(40)

1 “4D

prb) ¢ —————,
77 s expleldp(b) — dp))

where

dp = 2 dp (D).

In equation (41), J ,is a set of foreground vectors, which
have the smallest values of inconsistency d,(b) over all
feasible b’s. In addition, a;b is the mean of the inconsistency
measures of the vectors in 3 ; and the parameter ¢ is a
constant, which is empirically set to 0.02 or other appropri-
ate values.

According to an embodiment, system 100 generates a
relatively small number (typically about 10 to 20) of matting
components for an input image. As a result, module 110 may
generate all feasible vectors b’s and check the corresponding
d4,(b) for each vector b. According to another embodiment,
module 110 may improve computational efficiency by ignor-
ing b’s that have relatively large values of d,(b) and only
focus on b’s that have relatively small values of d,(b).

Based on the formulation in equations (40) and (41),
module 110 determines that, if a combination of matting
components is consistent with respect to the component-
level Laplacian matrix L., and is balanced with respect to
the remaining components, the corresponding p/b) have a
relatively large value. However, for any b and its comple-
ment (1-b), the values of p(b) and p(1-b) are actually equal.
Thus, foreground and background mattes cannot be distin-
guished from each other simply based on the inconsistency
measure in equation (40). According to a further embodi-
ment, module 110 further evaluates a convexity of a matte
and a convexity of its complement. Module 110 then iden-
tifies the foreground matte based on the assumption that a
foreground matte usually tends to be convex. Here, the
convexity is measured based on a ratio of the areas between
a matte and its corresponding convex hull. By comparing the
convexity between any pair of b and 1-b, module 110
eliminates the matting components with relatively low con-
vexity.

FIG. 12 illustrates exemplary embodiments of matting
layers 1202-1220 and a possibility map 1222 for a fore-
ground region of input image 302. Matting components
1202-1218 for input image 302 correspond to ten b’s with
the largest values of p(b) (i.e., rank #1 to rank #10). It can
be seen that these mattes typically have a large overlap with
the foreground area, i.e., the flower regions. Hence, if §
represents the set of leading foreground vectors with the
largest values of p(b), module 110 estimates the foreground
vector by as the expectation of the b vectors in & as follows:

D prb (42)
beé

bpg = ————.
FET Y b
beé
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Based on equation (42), module 110 calculates the fore-
ground possibility map for the foreground matte as a
weighted sum of the component-level alpha matte values as
follows:

apg=lal. .. a5 brg (43)

As shown FIG. 12, an exemplary possibility map 1222
reflects how likely an image pixel belongs to the foreground
region of input image 302.

According to another embodiment, for the multiple layers
generated by module 108, such as those shown in FIG. 11B,
module 110 calculates a foreground factor for each matting
layer o, ,,,” as follows:

X er “4)

T
1p@igyer

q
Flayer(Qayer) =

where 1, denotes a Px1 all-one vector. FIG. 11B shows the
value of the foreground factor for each matting layer. In
general, a matting layer with a relatively large foreground
factor is more likely to be a portion of the foreground region.

FIG. 13 illustrates a flow chart of a process 1300 for
image matting and foreground estimation based on hierar-
chical graphs, according to an embodiment. Process 1300
may be implemented on system 100 according to the tech-
niques disclosed above. In particular, according to process
1300, at step 1302, an input image is received. The input
image includes a plurality of image elements, such as pixels.
Each pixel includes color values such as those defined
according to the known color spaces. At step 1304, a
plurality of matting cells is generated based on the input
image. Each matting cell includes a group of image ele-
ments. The matting cells may be generated by first applying
a contraction process to the input image and then mapping
the contracted image elements to the matting cells based on
affinity relationships among the image elements.

At step 1306, affinity values are calculated for the plu-
rality of matting cells based on the input image. An affinity
value indicates the similarity between each pair of matting
cells. The affinity values of the cells may be calculated based
on the multi-resolution local affinity learning scheme
described above with reference to FIGS. 5 and 6.

At step 1308, a first graph, such as the cell-level graph
disclosed above, is formed based on the plurality of matting
cells and the affinity values. The first graph includes a
plurality of first nodes or vertices representing the matting
cells and a plurality of first edges associated with the affinity
values of the matting cells. At step 1310, a plurality of
matting components are generated for the input image based
on the first graph. The matting components may be gener-
ated by decomposing the first graph based on the affinity
values of the matting cells. One or more of the matting
components are then identified as belonging to a foreground
region of the input image.

FIG. 14 illustrates a flow chart of a process 1400 for
image matting and foreground estimation based on hierar-
chical graphs, according to another embodiment. Process
1400 may be implemented on system 100 according to the
techniques disclosed above. In particular, according to pro-
cess 1400, an input image is received at step 1402. The input
image includes a plurality of image elements, such as pixels.

At step 1404, a first graph, such as the pixel-level graph
disclosed above, is formed based on the input image. The
first graph includes a plurality of first nodes or vertices
representing the image elements and a plurality of first edges



US 9,449,395 B2

19

representing affinity relationships among the image ele-
ments. At step 1406, a second graph, such as the cell-level
graph disclosed above, is formed by grouping the image
elements into a plurality of cells. The second graph includes
a plurality of second nodes or vertices representing the cells
and a plurality of second edges representing affinity rela-
tionships among the cells.

At step 1408, a third graph, such as the component-level
graph disclosed above, is formed by decomposing the sec-
ond graph into a plurality of matting components. The third
graph includes a plurality of third nodes or vertices repre-
senting the matting components and a plurality of edges
representing affinity relationships among the matting com-
ponents. At step 1410, probability values are determined,
indicating the probabilities of the matting components as
belonging to a foreground region of the input image based
on the third graph.

Other embodiments of the invention will be apparent to
those skilled in the art from consideration of the specifica-
tion and practice of the invention disclosed herein. It is
intended that the specification and examples be considered
as exemplary only, with a true scope and spirit of the
invention being indicated by the following claims.

What is claimed is:

1. A method for image matting based on a hierarchical
graph model, comprising:

receiving an input image including a plurality of image

elements;
generating a plurality of matting cells, the generating
including converging a subset of image elements of the
plurality of image elements toward each other, wherein
each cell includes a group of image elements;

calculating affinity values for the plurality of matting cells
based on the input image; and

forming a graph based on the plurality of matting cells and

the affinity values, the graph including a plurality of
nodes representing the matting cells and a plurality of
edges associated with the affinity values of the matting
cells;

generating a plurality of matting components for the input

image by decomposing the graph; and

identifying at least one of the matting components

belongs to a foreground region of the input image.

2. The method of claim 1, further comprising determining
probabilities of the matting components being the fore-
ground region of the input image.

3. The method of claim 2, wherein the graph is a first
graph, and the method further comprises:

forming a second graph based on the matting components,

the second graph including a plurality of nodes repre-
senting the matting components and a plurality of edges
representing affinity relationships among the matting
components; and

calculating a Laplacian matrix based on the second graph;
and

determining the probabilities based on the Laplacian
matrix.

4. The method of claim 3, further comprising:

defining an inconsistency measure based on the Laplacian
matrix; and

determining the probabilities based on the inconsistency
measure.

5. The method of claim 1, wherein the graph is a first
graph, and the converging further comprises:

forming a second graph based on the input image, the

second graph including a plurality of nodes represent-
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ing the plurality of image elements and a plurality of
edges representing affinity information of the plurality
of image elements; and

generating a contracted image from the input image based

on the second graph.

6. The method of claim 5, further comprising:

defining normalized coordinates for the plurality of image

elements; and

calculating contracted coordinates for the plurality of

image elements based on the normalized coordinates
and the affinity information of the image elements.

7. The method of claim 6, further comprising generating
the plurality of matting cells based in part on the contracted
coordinates of the plurality of image eclements.

8. The method of claim 7, further comprising:

defining a coordinate system based on the contracted

coordinates and color values of the plurality of image
elements; and

generating the plurality of matting cells by mapping the

plurality of image elements to the matting cells based
on the coordinate system.

9. The method of claim 1, wherein the calculating of the
affinity values of the matting cells further comprises:

generating a plurality of down-sampled images from the

input image;

extracting a plurality of image patches from the down-

sampled images and the input image; and
determining the affinity values of the matting cells based
on the image patches.

10. The method of claim 9, further comprising:

determining a feature vector for each cell based on image

elements within the cell; and

calculating the affinity value of the cells by applying an

affine transformation to the feature vector.

11. The method of claim 10, wherein the graph is a first
graph, and the method further comprises:

defining a global error function based on the affinity

values of the cells;

forming a second graph based on the cells; and

determining a Laplacian matrix for the second graph

based on the global error function.

12. The method of claim 11, wherein the defining of the
global error function further comprises:

defining an error function for each image patches; and

defining the global error function by calculating a

weighted sum of the error functions of the image
patches, wherein the global error function includes a
weight for each image patch that indicates relative
importance of the image patch.

13. The method of claim 11, further comprising normal-
izing the Laplacian matrix using a degree matrix.

14. The method of claim 13, wherein the generating of the
components further comprises:

generating a plurality of segments from the graph by

performing spectral clustering on the graph based on
the normalized Laplacian matrix; and

generating the matting components from the segments by

refining the segments.

15. The method of claim 14, further comprising generat-
ing a plurality of layers by grouping the matting components
based on affinity relationships between the matting compo-
nents.

16. A method for image matting based on hierarchical
graphs, comprising:

receiving an input image including a plurality of image

elements;
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forming a first graph based on the input image, the first
graph including a plurality of first nodes representing
the plurality of image elements and a plurality of first
edges representing affinity relationships among the
plurality of image elements;

forming a second graph by grouping the plurality of
image elements into a plurality of cells, the second
graph including a plurality of second nodes represent-

22

18. The method of claim 16, wherein the converging

further comprises:

generating an image pyramid by recursively down-sam-
pling the input image;

extracting a plurality of image patches from the image
pyramid; and

determining the affinity relationships among the cells
based on the image patches.

19. A non-transitory computer-readable medium storing

ing the cells and a plurality of second edges represent-
ing affinity relationships among the cells, wherein the
forming of the second graph includes converging a

instructions, which, when executed by a processor, cause the
processor to perform a method for image matting based on
hierarchical graphs, the method comprising:

subset of image elements of the plurality of image
elements toward each other;

forming a third graph by decomposing the second graph
into a plurality of matting components, the third graph
including a plurality of third nodes representing the
matting components and a plurality of edges represent-
ing affinity relationships among the matting compo-

receiving an input image including a plurality of image
elements;

generating a plurality of matting cells, the generating
including converging a subset of image elements of the
plurality of image elements toward each other, wherein
each cell including includes a group of image elements;

calculating affinity values for the plurality of matting cells
based on the input image;

nents; 20 X . .
determining probabilities of the matting components forminga e aph based on the plure}hty oi.“mattlng Ceus and
belonging to a foreground region of the input image the affinity Vah?es’ the graph including a plurah.ty of
based on the third graph; and nodes representing the matting cells. and a plurahty of
identifying at least one of the matting components that edges representing affinity information of the matting
belongs to a foreground region of the input image. 25 cells;

17. The method of claim 16, wherein the converging

further comprises:

applying a contraction process to the input image; and
mapping the plurality of image elements to the cells based
on the contracted input image and the first graph.

generating a plurality of matting components for the input
image by decomposing the graph; and

identifying at least one of the matting components that
belongs to a foreground region of the input image.
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